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I. INTRODUCTION

Analysis of shock induced explosive detonation via general projectile impact is complicated
not only by impact velocity (VI), projectile material, length, and cross-sectional area require-
ments but by projectile nose shape as well. The simplest nose shape from an analytical view-
point is flat (FN) or planar. A conical shape is next in complexity, followed by the hemispheri-
cal (HN). Many projectiles while penetrating armor and/or cover plates will erode and acquire
essentially a hemispherical profile. Consequently, the hemispherical shape is important from
academic and practical considerations.

An earlier analysis of experimental data for impact shock induced detonation via FN cylin-
drical projectiles is documented in Reference 1. In this work, some simple empirical relations
were derived which are functions of the projectile cross-sectional area and known impact shock
variables. These relations were introduced to enhance and/or supplement current empirical deto-
nation prediction methodology.

It is the purpose of the present report to demonstrate that for detonation of one explosive
(PBX-9404), the HN shape is equivalent to a much smaller FN shape at the same impact
velocity (VI). The demonstration is accomplished by comparing theoretical and experimental
information. It is shown that the equivalent flat nose diameter (DFNEO) of a HN projectile
(Dmq) is:

DFNFý V= () DH (1

where:
Usp ; Shock front velocity in the projectile(steel).

A very limited amount of experimental data was available for the COMP-B explosive.
This datum (one point) compares favorably with the above relation when a reasonable extrapola-
tion of FN experimental information is performed. These experimental data are discussed more
thoroughly in Section II.

References 2, 3, and 4 also contain analyses of hemispherical nose projectile impact shock
induced detonation of explosives. The general emphasis and scope of these documents differ
somewhat from that of the present report.

Here, the thrust is to delineate the flat nose equivalent diameter (DFNqEQ) of HN shapes.
This is important, since when DFNEQ is found from Equation 1, then it can be employed for the
diameter, D, in the empirical relations described in Reference 1 for FN projectiles. If equiva-
lence actually exists, then there should be correlation with the FN projectile relations in Refer-
ence 1. Two examples of this type of correlation are given for the Held explosive sensitivity
parameter, VI VD_, and the comparison is satisfactory.



II. EXPERIMENTAL INFORMATION

Reference I contaiis a rather detailed analysis of five sets of experimental impact induced
detonation data for five different secondary explosives. These data from diverse sources had
been systematically acquired by firing flat faced projectiles with different cross-section area and
different velocities (VI) into flat explosive specimens.

The basic result of these experimental investigations was that the impact velocity (VI) nec-
essary to cause detonation was highly dependent on the projectile cross-section area dimensions
or rod diameter (DFN). Some of these data from Reference 5 for PBX-9404 are shown in Figure
1 (VI versus DFN). The line shown is the boundary between detonation and no detonation. Det-
onation occurs for points above the line and does not occur for points below the line. Detonation
occurred for the six points illustrated, so the demarcation line shown is conservative (Detonation
always occurs for points above the line).

Reference 5 also contains similar experimental information for PBX-9404 subjected to
impact by steel cylinders with hemispherical tips. The diameter (DHN) and impact velocity were
systematically varied to ascertain the demarcation limits. This information is also shown in Fig-
ure 1. Detonation occurs for all the points shown except one, which is denoted by a dark or
filled-in symbol. The faired demarcation line goes between the "NO GO" point and the nearby
"GO" point and passes through or above the other "GO" points. Thus, it is believed to be con-
servative.

Reference 6 contains experimental information for the detonation demarcation limits of
PBX-9404 and COMP-B when struck by a spherical steel projectile. Only one diameter (1.3
cm) was employed but the striking velocity was varied to define the critical velocity, VCR, for
each explosive. Examination of Figure 2 in Reference 6 reveals the following critical velocities
where detonation was certain to occur:

Explosive VcR (K/sec)
PBX-9404 1.14
COMP-B 1.75

This "GO" point for PBX-9404 is plotted in Figure 1 where it agrees closely with the
information from Reference 5 for the hemispherical tipped cylindrical rod projectiles. This is
interesting since it illustrates the importance of nose shape as contrasted to the overall shape (rod
or sphere). Apparently the length of the sphere (its diameter) is large enough so that reflected
tensile stress waves from the rear do not diminish the main compressive pulse magnitude (Ps)
before a critical amount of time (TcR) has elapsed. See Reference 1 for additional information
concerning for the importance of the compressive shock pulse duration (Trcp.

The steel spherical projectile "GO" point for COMP-B is shown in Figure 2. No informa-
tion for hemispherical tipped cylindrical tipped rod impact induced detonation is available for
COMP-B. However, there is information for flat nose cylindrical projectile induced detonation
available in Reference 7. Three critical experimentally derived data points (VI, DFN) from Ref-
erence 7 are shown in Figure 2 and this defines the detonation demarcation curve for COME-B
and flat nose cylindrical rod projectiles. Note the extrapolation of this demarcation line to a
region of smaller DFN and large VI. This non-linear extrapolation is considered to be a reason-
able representation of the detonation demarcation line in this important region. It was done so

2



that an "experimental" value of DFEQ could be graphically estimated as shown in Figure 2 for
the single data point of the spherical projectile striking COMP-B.

A similar example for PBX-9404 is illustrated in Figure 1 for one of the HN rod projec-
tiles. For a given V1 which produces detonation, the hemispherical nose diameter (DHN) has to
be much larger than the corresponding flat nose equivalent diameter (DFo).

Thus, the hemispherical nose is not as efficient in producing detonation as a flat nose. In
other words, a large portion of the HN projectile diameter (DHN) is ineffective so far as impact
shock induced detonation is concerned. Only a much smaller portion (DFNEQ) is effective and it
can be experimentally ascertained as described above and illustrated in Figures 1 and 2. Exper-
imental values of DFNEQ for the HN and spherical projectiles are given in Table 1.

The appropriate theory is discussed in the following section.

MI. EQUIVALENT FLAT NOSE DIAMETER (DFNEQ)

The contents of Reference 1 delineate the importance of the projectile flat nose area for
impact shock induced detonation. That is, an undisturbed plane or one dimensional shock pres-
sure must act on a critical area (AcR) for a specific amount of time (TcR) or detonation will not
occur. Both Moulard's critical area concept and the Walker-Wasley critical energy concept must
be satisfied.

Thus, intuitively, it should not seem strange that only a portion of a hemispherical nose area
(or diameter) would be effective for shock induced detonation. This would be "almost flat" part
of the surface near the projectile centerline.

Reference 8 provides a relatively simple analysis which indicates how much of the hemi-
spherical curved impacted surface would experience essentially an undisturbed or undiminished
shock pressure pulse before a release or rarefaction (tensile stress) wave forms and propagates
back into the shocked material. The rarefaction relieves the relatively high compressive shock
pressure. The time and place of its occurrence influences the duration (TcR) and area (A or
ACR) coverage of the undiminished shock pressure, Ps.

First of all in Reference 8, it is shown for a flat faced projectile that the critical angle of
yaw is:

OCR ARCSIN (VI / Usp) (2)

The critical yaw angle, OCR, is depicted in Figure 3 which is similar to Figure 10b of Reference
8. For angles less than OCR, the magnitude and duration of the shock pressure are practically the
same as an unyawed projectile. For yaw angles greater than 4kcR, the full Hugoniot shock pres-
sure exists only at the point of contact.

In addition, it is indicated in Reference 8 that Equation 2 also defines the critical angle for
the full Hugoniot shock pressure duration and affected area of a curved surface impacting a flat
target. This is illustrated in Figure 4 for a hemispherical nose shape. Figure 4 is similar to Fig-
ure 11 of Reference 8.

The angle, 0, between the flat target surface and the projectile curved surface changes and
increases as penetration increases. When ý exceeds OCR, a rarefaction (tensile) wave forms at the
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projectile surface/target surface edge contact point and propagates back into the shocked region.
This reduces the Hugoniot pressure duration and its areal coverage.

In Section II, it was shown how the effective or equi-.'alent diameter (DFNEQ) of HN projec-
tiles was determined from experimental data. Figure 5 illustrates the geometrical relationship
between DFNEQ and DHN. They are related to an angle, OEQ, which is:

OEQ = ARCSIN (DFNo/DHN) (3)

So far, two angles, OCR and 4Q, have been defined for the hemispherical shape via Equations 2
and 3, respectively. To ascertain whether these angles were equal or related, they were com-
puted and compared as follows.

The angle 4CR was computed for all the HN and spherical projectile impact data discussed
in Section II. The results are listed in Table 2 and plotted versus V1 in Figure 6. Figure 7 illus-
trates V1/Usp plotted versus V1. See the Appendix for additional information regarding the com-
putation of Usp and Ps. These computations took account of the Hugoniot Elastic Limit (HE)
and 130 KBAR transition point that occurs in iron and mild steel [9 and 101.

The equivalent flat nose diameters (DFNEQ) for each of the HN and spherical projectiles
were determined graphically from the experimental data plots as illustrated in Figures 1 and 2.
For a given VI, the shock pressure (Ps) must be the same for both FN and HN or spherical pro-
jectiles. When DFMO is found, then 4EQ is computed via Equation 3. This information is listed
in Table 1 and depicted in Figures 6 and 7 as a function of V1.

The comparative information in Figures 6 and 7 reveals that essentially:

OCR = OEQ (4)

or

DFNE_ V1
DHN Usp (5)

In Figure 8, DFNEQ/D-N is plotted versus VI/Usp and the comparison is essentially one-to-one.
Thus practically, for the limited amount available:

DFE (V±.)DH (1

= a function of V,

Although the magnitudes of OCR, OEQ, or DFNEQ/DHN, VI/Usp still compare favorably for
PBX-9404 at Vi = 1.95 km/sec or VI/Usp = 0.385 the data trend is different. There is a cross-
over of 4EQ and DFNEQ/DHN from being slightly greater than OCR and VI/USB respectively to
being somewhat smaller (Figs. 6, 7, and 8). This may be caused by the projectile material
behavior since PS is greater than 130 Kbars, which is a phase change point and for iron and mild
steels.

Note that in Table 2, the second wave shock velocity at the 130 Kbar point was employed
in Equation 2 rather than the slower third wave velocity. The results at V1 = 1.70 km/sec may
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also be influenced by this projectile material phase change. Some additional experimental data
at higher V1 conditions and smaller projectile diameters are needed to more completely define
the data trend. Systematic testing with other projectile materials such as tungsten alloys (which
are commonly used in severe impact applications) is needed for a variety of important explo-
sives.

It was noted in Section I that if DFNEQ equivalence is a valid concept, then there should be
good agreement with various FN projectile data correlation parameters such as the widely used

explosive sensitivity parameter (V1 F = constant) which was first suggested by Dr. Manfred
Held in 1968 [11, 12, and 13]. The Held constant differs for different explosives. In Reference
1, Appendix E, this sensitivity parameter is evaluated for PBX-9404 and COMP-B for the same
FN projectile data which is shown in Figures 1 and 2, respectively.

The flat nose sensitivity factorVi f-, for PBX-9404 and COMP-B is tabulated in Refer-
ence 1 and is plotted versus V1 in Figures 9 and 10, respectively of the present report. Also

shown in these Figures are the results for VI ) for the HN and the spherical projectiles

considered in this report. The tabulated values are listed in Tables 2 and 3.

Note that in Tables 3 and 4 DFNEQ is not the experimental value shown in Table 1. DFNEQ
is computed via Equation 1, such as could or would be done in an engineering application to pre-
dict detonation if experimental data were not available. These VI Y,5ý results compare rea-

sonably well with the FN projectile parameter, v1J/N.

It is believed that the equivalent flat nose diameter concept could also be applied to corre-
late (via the Held parameter as described above) some of the shaped charge jet/explosive detona-
tion data. However, the jet tip shape can vary a considerable amount [14] so that a complete cor-
relation may not be possible. As time and circumstances permit, an attempt to correlate the

shaped charge jet /detonation data via the VI o parameter will be made.
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IV. CONCLUSIONS

A small sample of experimental data have been used to derive what appears to be a valid
geometric equivalence relationship suitable for detonation predictive purposes in those cases
involving flat nosed and hemispherical projectiles. The FIN shape is important from a practical
point of view. Many "Sharp-Ninted" projectiles have a small hemispherical tip. Also blunt or
flat projectiles erode during penetration of armor and/or shields, and the resulting shape is
approximately hemispherical. If an energetic material is being shielded, Equation 1 anJ the Held
sensitivity coefficient can be employed in detonation prediction analyses. Also the equivalent
flat nosed diameter concept may be applicable to shaped charge jets as mentioned in Section III.

V. RECOMMENDATIONS

The data and analysis reported here suggest that detonation data acquired using impact of
Flat nosed projectiles on bare explosives can be used to establish detonation criteria for projec-
tiles of other symmetric shapes. Additional testing such as reported in References 5, 6, and 7 is
required to validate the postulated -eometric equivalence definition for flat nosed and hemi-
spherical tipped projectiles.
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Table 1. Experimental Results for DFNEQ and 4Q

Explosive DHN DFNEQ DFNEQ/DHN 4EQ
cm cm - Deg.

PBX-9404 0.4445 0.150 0.3375 19.72

0.5080 0.175 0.3445 20.15
0.6300 0.200 0.3175 18.51

[51 1.1430 0.308 0.2695 15.63

1.2700 0.330 0.2598 15.06

1.7780 0.405 0.2278 13.17

PBX-9404 1.300 0.320 0.2461 14.25
[6] (Spherical)

COMIP-B 1.300 (0.420)* 0.3231 18.85
[6] (Spherical)

* See Text, Section II

Table 2. Computed Results for Usp and ýCR

Explosive DHN VI Usp Upp Ps USEX UpEx V1/Usp ýCR
- cm km/sec km/sec km/sec Kbars km/see km/sec - Deg

PBX-9404 0.4445 1.95 5.069* 0.470 166.9 6.120 1.480 0.3847 22.62

0.5080 1.70 5.069* 0.375 140.0 5.736 1.325 0.3354 19.60

0.6300 1.53 5.037 0.306 123.7 5.485 1.224 0.3037 17.68
[5] 1.1430 1.21 4.927 0.223 89.0 4.898 0.987 0.2456 14.22

1.2700 1.16 4.910 0.211 9.; I 4.804 0.949 0.2363 13.66

1.7780 1.04 4.872 0.182 72.4 4.578 0.858 0.2135 12.33

PBX-9404 1.300 1.14 4.900 0.203 82.0 4.773 0.937 0.2326 13.45
[6] Spherical I

COMF-B 1.300 1.75 5.062 0.325 129.1 5.33 1.425 0.3457 20.22
[6] Spherical

*Iron Shock Velocity at 130 Kbar Transition Point
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Table 3. The Held Explosive Sensitivity Factor, V1  ,

for Hemispherical Projectiles Striking PBX-9404

V V VV/I DN -D---EV VI2DFNEQ
(VyUsp*DHN)

mm/nt-sec - mm mm mm 1 /2  mm 3/2/1-.sec mm 3/-sCc 2

1.95 0.3847 4.445 1.710 1.308 2.550 6.502

1.70 0.3354 5.080 1.704 1.305 2.219 4.92.4

1.53 0.3037 6.300 1.913 1.383 2.116 4.479

1.21 0.2456 11.430 2.807 1.675 2.027 4.110

1.16 0.2363 12.700 3.001 1.732 2.010 4.038

1.04 0.2135 17.780 3.796 1.948 2.026 4.106

1.14 0.2326 13.00 3.024 1.739 1.982 3.930
(spherical spherical
projectile) , I I II

Table 4. The Held Explosive Sensitivity Factor, V1 D

for a Spherical Projectile Striking COMP-B

VI VI/Usp DS DFNQQ D V1 V V1
2DFNEO

(VI/Usp*DHN)
mm/ýt-sec - mm mw mmn mm33/2/R-.sec mm3/t--sec 2

1.75 0.3457 13.00 4.494 2 2.120 3.71 13.76
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APPENDIX
IMPACT SHOCK VARIABLE

RELATIONSHIPS AND BASIC DATA

Iron and some steels, under moderate impact shock loading below 130 Kbars, exhibit a
two wave structure where the first one is essentially an elastic wave followed by a slower plastic
wave front. The elastic wave is generated under these conditions is called the Hugonoit Elastic
Limit (HEL) to distinguish it from a dynamic elastic limit which could occur under less severe
loading conditions (9]. The double wave structure requires that computations for pressures and
densities be performed via the following equations.

The pressure behind the HEL wave is:

PHEL = Po CL UPHEL (A-1)

The density behind the HEL wave is:

QBIE[ goCL
(CEL - • (L - UpHEL) k )

go (A-3)

Equation A-3 is a good aproximation because CL, the longitudinal wave velocity, is much
larger than UPHEL SO that CLJ(CL-UpHEL) - 1.0. To a good approximation, since U., is gener-
ally much larger than UpHEI, the shock front pressure corresponding to the paritcle velocity UB
is:

ID = PHE Us (Up - UpM) + PML (A-4)

Experimentally, it has been found for many materials, that the shock velocity Us, is a linear

function of the particle of velocity, Up This relation is commonly represented by:

US = Co + S Up (A-5)

Where Co and S are experimentally determined constants. These constants for iron (or mild
steel), PBX-9404, and COMP-B are given in Table A-1. For steel the HEL wave velocity, par-
ticle velocity, and pressure values employed were taken from Reference 15. They are:

CL = 6.04 km/sec
UpHFL = 0.0288 km/sec
PHEL = 13.6 KBARS

In Appendix A of Reference 1, it was shown how to analytically compute the initial contact
particle velocities of colliding materials. In Reference 1, the effect of an HEL precursor wave
was not considered. However, in Reference 16, the HEL effect was included and this procedure
was employed in the present analysis for shock pressures less than or equal to 130 Kbars where
a phase transition occurs in the iron or mild steel projectiles. Above PS = 130 Kbars three
waves exist (one elastic and two plastic) until the plastic wave velocity (Us) excecds the elastic
wave velocity (CL). This one-wave situation occurs at very high impact velocities (VI). None of
the experimental data analyzed in the present investigation were in this one-wave region, but
three data points were in the 3-wave region or very close to it The initial particle velocities for
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these three data points were obtained by the graphical procedure suggested in Reference 1. Table
2 in the main body of this report, contains both the analytical and computed results. Both proce-
dures depend on following expression which is valid at the contact interface of the projectile (P)
and explosive (EX).

VI  = UpP + UpEX (A--6)

When the particle velocities are known, then Us and PS can be found from the appropriate relations
(A-5 and A-4, respectively).

Table A-1
Impact Shocked Material Information

Material PO Co S Source Comments
- Grams/cm 3  km/sec - -

Iron or 7.84 4.63 1.33 [17, 181 PS < 130
KBARS

mild steel 7.84 1.10 4.22 [10] Ps > 130
KBARS

PBX-9404 1.84 2.45 2.48 [19, 20]

Comp-B 1.70 2.95 1.67 [21] S was modi-
fied from 1.58

to 1.67
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